Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging.
نویسندگان
چکیده
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
منابع مشابه
Optoelectronic properties of dual emitting RNA-mediated colloidal PbSe nanostructures.
This paper presents the optical and photophysical properties of RNA templated PbSe nanostructures in the presence of excess Pb(2+). These particles exhibit an onset of absorption in the NIR range at about 1208 nm (0.97 eV) and display weak excitonic bands at 320 nm, 405 nm and 670 nm. The excitation of these particles by 670 nm light causes dual fluorescence in the red and NIR region peaking (r...
متن کاملCancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles.
The use of near-infrared (NIR) light over 1000 nm (OTN-NIR or second NIR) is advantageous for bioimaging because it enables deep tissue penetration due to low scattering and autofluorescence. In this report, we describe the application of rare earth ion-doped ceramic nanoparticles to cancer-targeted NIR imaging using erbium and ytterbium ion-doped yttrium oxide nanoparticles (YNP) functionalize...
متن کاملUpconverting NIR Photons for Bioimaging
Lanthanide-doped upconverting nanoparticles (UCNPs) possess uniqueanti-Stokes optical properties, in which low energy near-infrared (NIR) photons can beconverted into high energy UV, visible, shorter NIR emission via multiphoton upconversionprocesses. Due to the rapid development of synthesis chemistry, lanthanide-doped UCNPscan be fabricated with narrow distribution and tunable multi-color opt...
متن کاملDevelopment of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging
The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SE...
متن کاملNd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm
Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd(3+), Yb(3+), Er(3+) tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 23 شماره
صفحات -
تاریخ انتشار 2013